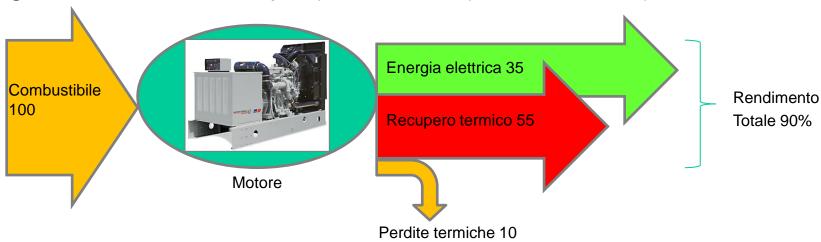


La cogenerazione : tecnologie, mercato, incentivi

Stefano Campanari – Dipartimento di Energia - Politecnico di Milano

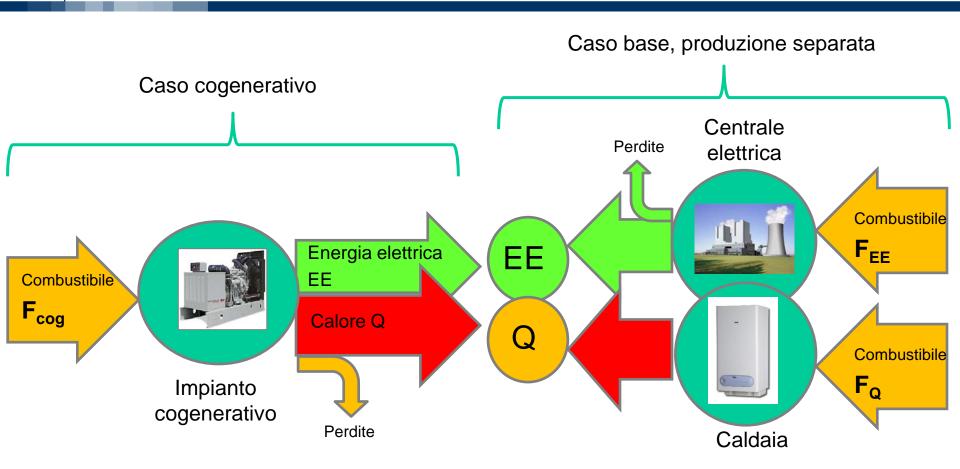
Convegno POLYGEN: COGENERAZIONE DIFFUSA E TRIGENERAZIONE

Fiera di Milano – 10 Maggio 2013


- Introduzione alla cogenerazione e trigenerazione, vantaggi e limiti
- Breve rassegna di tecnologie, classiche e di prospettiva
- Aspetti di incentivazione e di mercato il tema della cessione di energia alla rete

COGENERAZIONE: Definizione

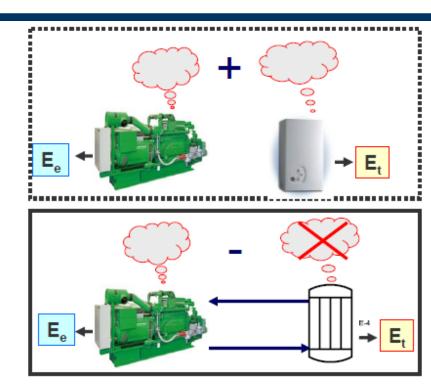
Produzione combinata di energia elettrica e calore (combined heat and power, CHP), entrambi intesi come effetti utili.


Può essere effettuata utilizzando un "motore" (es. a combustione interna a pistoni, a turbina a gas, a turbina a vapore....) che genera energia elettrica, dal quale si <u>recupera</u> anche calore altrimenti disperso.

Il "motore" a seconda delle tipologie può essere alimentato con combustibili fossili (gas naturale, oli combustibili) o mediante biocombustibili rinnovabili (biogas, biocombustibili liquidi) o di risulta (RSU e derivati).

Vantaggio energetico della cogenerazione

Si ottiene un vantaggio quando F_{cog} è minore di F_{EE}+F_Q, a parità di effetti utili EE e Q per l'utente finale



Vantaggio ambientale della cogenerazione

Un primo beneficio ambientale della cogenerazione è legato al fatto che, grazie al recupero termico, posso "evitare" di tenere in esercizio una caldaia, risparmiando quindi le emissioni della stessa.

Motore primo non cogenerativo

Motore primo in assetto cogenerativo

- Un secondo beneficio è legato al fatto che, producendo energia elettrica, posso "evitare" di far funzionare centrali elettriche convenzionali, risparmiando le corrispondenti emissioni.
- Importante però è che le emissioni specifiche del cogeneratore siano basse rispetto a quelle della caldaia / delle centrali, in modo che il bilancio sia positivo! Differenza poi tra effetti locali e globali.....

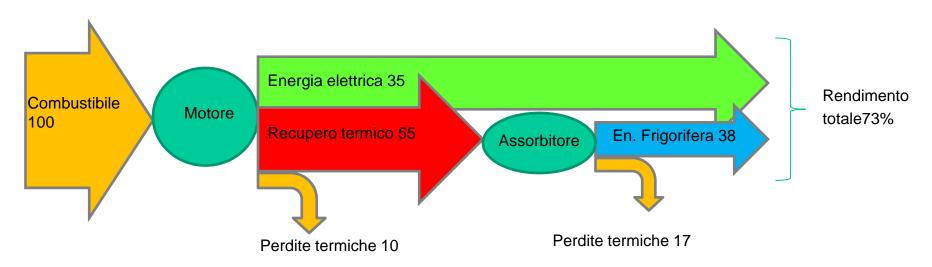
Vantaggi per il sistema elettrico e per il Paese:

- Risparmio energetico : vantaggi per la bilancia dei pagamenti, diminuisce la dipendenza dall'estero (minore importazione combustibili fossili)
- Contenimento emissioni inquinanti (con generatori puliti..) e CO₂
- Riduzione del sovraccarico delle linee di trasmissione, possibile aumento di affidabilità del sistema elettrico
- Riduzione perdite di trasmissione e distribuzione
- Si evita la costruzione di nuove grandi centrali / di nuove linee di trasmissione
- Favorisce ingresso nuovi operatori / liberalizzazione settore energetico

Vantaggi per l'utente:

- Benefici economici : risparmio sulle bollette energetiche (su questi tema, ruolo fondamentale degli incentivi – vedi parte normativa)
- Maggiore sicurezza negli approvvigionamenti elettrici (possibilità di funzionare anche "in isola" a fronte di black-out)
- Funzionamento in "Peakshaving" per far fronte ad elevate richieste di potenza per periodi di tempo limitato
- Funzionamento per "Power quality" per garantire tensione e frequenza costante a salvaguardia di un processo produttivo

Limiti della cogenerazione

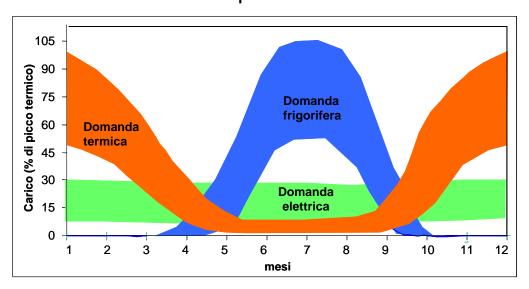

- Contemporaneità desiderata della richiesta di energia elettrica e termica, salvo utilizzo accumuli di calore (es. serbatoi acqua calda)
- Necessaria una buona vicinanza tra produzione e utilizzo (utenze sufficientemente in vicinanza del sistema di generazione)
- Il livello termico a cui è richiesto il calore deve essere compatibile con il tipo di cogeneratore scelto
- •Maggiori costi iniziali rispetto ai sistemi tradizionali (caldaie + allaccio rete e.e.)
- Gestione più complessa dell'impianto
- Redditività legata al quadro normativo/tariffario (variabile nel tempo!)
- Barriere non tecniche (costi burocratici, autorizzativi, fiscali; ad es. interfacciamento con la rete elettrica: duplicazione ed onerosità dei sistemi di sicurezza e distacco, ambito normativo poco favorevole)
- Parte di queste problematiche vengono risolte affidando il servizio di installazione e gestione di un impianto cogenerativo ad una ESCO (Energy Service Company)

Trigenerazione : definizione

Produzione combinata di energia elettrica, calore e freddo (combined cooling, heating and power, CCHP), intesi come effetti utili.

Si effettua utilizzando un "cogeneratore" che genera energia elettrica e calore, a cui si affianca una macchina frigorifera:

- > a compressione, azionata dall'energia meccanica o elettrica prodotta;
- > ad assorbimento, azionata dal calore recuperato dal cogeneratore.



In aggiunta ai vantaggi legati alla cogenerazione, la trigenerazione porta ulteriori vantaggi per il sistema elettrico:

- Riduce il picco di richiesta elettrica sulla rete nei mesi estivi
- Aumenta l'affidabilità del sistema elettrico nei periodi + critici
- Evita la costruzione di nuove linee di distribuzione
- Si evita la costruzione di nuove centrali "di punta"

per l'utente:

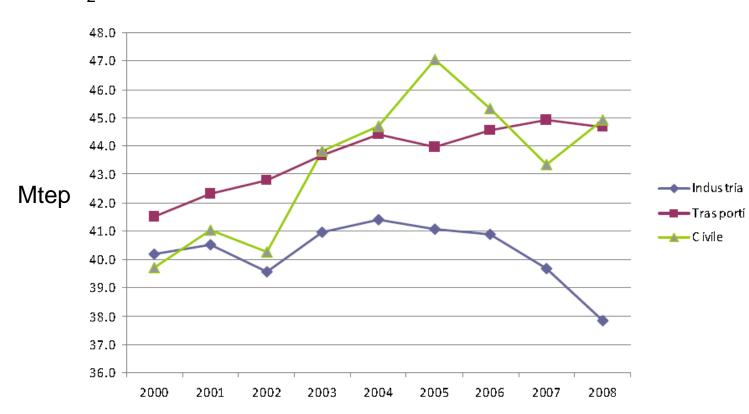
• maggiore risparmio sulle bollette energetiche: possibile maggior redditività dell'impianto legata al fattore di utilizzo più elevato

AMBITI APPLICATIVI

COGENERAZIONE (Trigenerazione) INDUSTRIALE:

- Si applica da decenni a molti settori: industria cartaria, tessile, alimentare, chimica, farmaceutica, raffinerie, materie plastiche,... caratterizzate da elevate richieste termiche spesso stabili nel tempo per la maggior parte dell'anno
- Potenze significative (MW o decine di MW): economia di scala e utilizzo di tecnologie consolidate (turbine a vapore e turbine a gas, cicli combinati; motori a c.i.)
- Più recente la diffusione di applicazioni presso utenze di scala medio-piccola (es. < 1 MW)

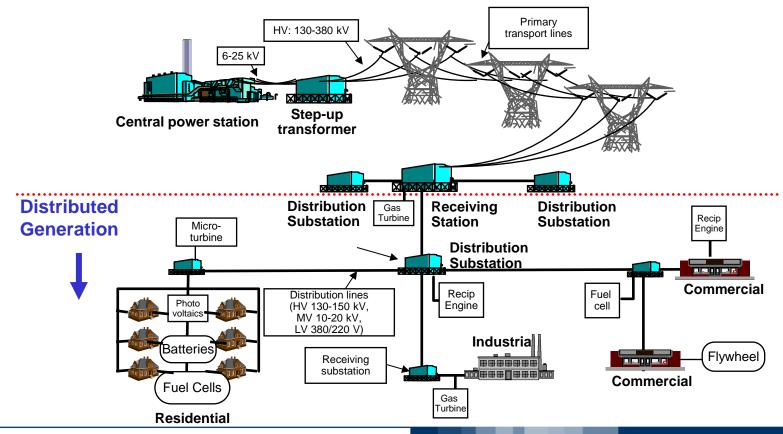
COGENERAZIONE (Trigenerazione) nei SETTORI CIVILE e TERZIARIO:


- Si applica già oggi a impianti di teleriscaldamento / teleraffrescamento
- Interessante la sua applicazione in molti settori: domestico e residenziale, uffici, centri commerciali, alberghi, centri sportivi (piscine), ospedali,...applicazioni di piccola scala e «MICRO»

Il settore della climatizzazione invernale ed estiva

I consumi di energia primaria legati alla climatizzazione invernale ed estiva degli edifici rivestono un ruolo primario

La razionalizzazione di tali consumi potrebbe fornire un contributo fondamentale al raggiungimento degli impegni di risparmio energetico e abbattimento delle emissioni di CO₂



Il quadro generale dei consumi di energia primaria per l'Italia mostra consumi oscillanti intorno a 45 Mtep, prossimo al valore del settore trasporti, sia pure con variazioni dovute a fattori climatici

La cogenerazione su piccola scala

Il contributo attuale degli impianti di piccola cogenerazione (<1000 kWe) in Italia è modesto, ma di notevole interesse: le stime di mercato Italiano indicano fino a 3.5 GW (secondo una ricerca AssoEsco, 2007-09).

Cogenerazione: situazione italiana

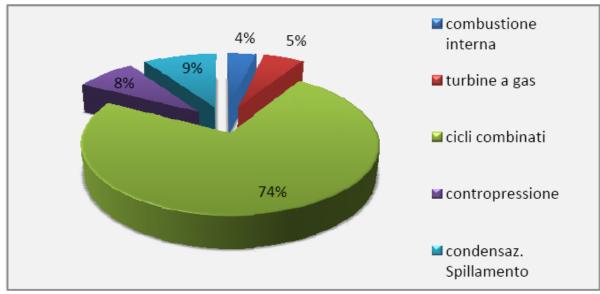


Figura 15. Share della potenza installata nel 2007 (dati Terna)

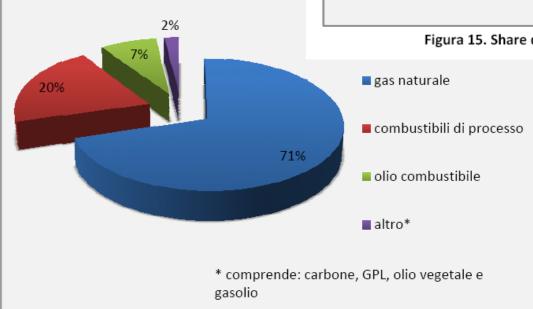
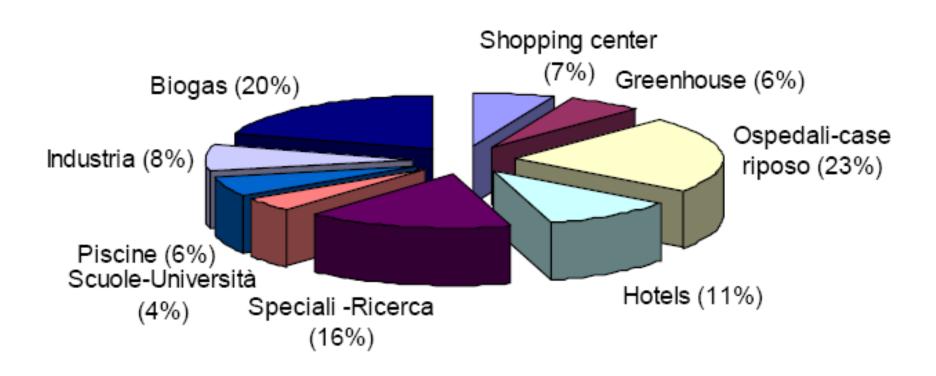



Figura 19. Share dei combustibili utilizzati (fonte GSE).

Hotel building with 130 kWe trigeneration plant, Milano, 2008

Ambiti di vendita - esempio

Dati di vendita secondo un costruttore di MTG

Micro cogenerazione

- ✓ Interessante anche il caso dei sistemi di micro-cogenerazione (<50 kW, ed in particolare 1-5 kW), intesi soprattuto per applicazioni residenziali, dove il grande numero di potenziali utenze potrebbe condurre a valori di potenza cumulativa installata simili a quelli del settore terziario.
- ✓ Come riferimento, si può considerare che il mercato delle caldaie domestiche in Italia è di oltre 1.5 milioni di unità/anno...

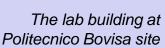
Prototipo di unità CHP da 1 kWe

Riferimenti utili su:

Macchi, Campanari, Silva "La climatizzazione a gas e ad azionamento termico" www.polipress.polimi.it - 2012

Tra i temi trattati:

- tecnologie per cogenerazione e trigenerazione su scala piccola e micro
- tecnologie per refrigerazione
- quadro normativo, applicazioni ed esempi

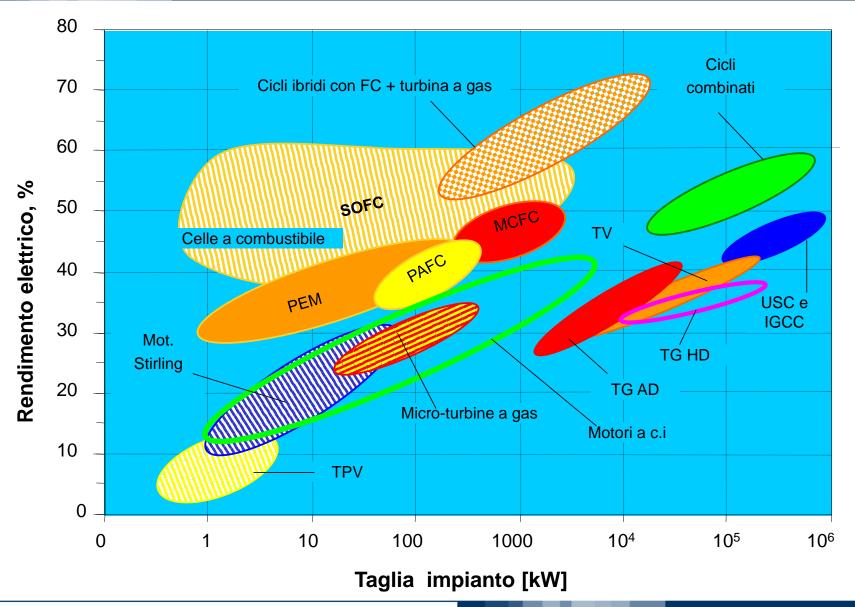

Laboratorio di Microcogenerazione (LMC) @ Politecnico

Test su unità CHP fino a 100 kWel e 200 kWth/frig

Test room

Test room, where is located the tested system, with two accesses.

Control room


Control room and internal access to the test room Hydraulic circuits (first floor)

http://www.gecos.polimi.it/laboratories/micro-cogeneration.php

Tecnologie: sommario e campi di potenza applicabili

Nel mondo varie iniziative sulla microcogenerazione avanzata a fuel cell

	European Virtual Fuel Cell Power Plant	DoE-FE-DoD	Ene-Farm	Ene-Field	Callux
Region	Germany, Spain, Portugal, Netherlands	United States	Japan	Europe	Germany
FC technology provider	<u>Vaillant</u> Plug Power	Plug Power Nuvera	Various	Various	Baxi Innotech, Hexis, Vaillant
FC type	PEM	PEM	PEM & SOFC	PEM & SOFC	PEM & SOFC
Fuel	NG	NG-C3H8-H2	NG	NG	NG
Electr. nom. Power (kWe)	4,6	5	0.75	<u>Tbd</u>	1
Therm. nom. Power (kWth)	9	2-9	1	tbd	2
N° installed	31	27	>40000	1000 (target)	305 (@04/2013 800 target)
Operational period	Jan.2004 – May.2005	Oct.2003 - May.2007	April 2006 – ongoing	2012 - ongoing	2007 - ongoing

Classificazione e Direttiva UE

La Direttiva Europea sulla cogenerazione definisce:

•"micro-cogeneration" tutte le applicazioni con potenza elettrica installata inferiore a 50 kW_{el}; "small-scale cogeneration" le applicazioni con $P_{el} < 1$ MW_{el}; "cogeneration" e poi "large-scale cogeneration" oltre 1 MW_{el}

Si considerano "high efficiency cogeneration" i casi di installazioni con Indice di risparmio energetico PES > 10%, salvo per impianti con Pel <1 MWel, dove viene accettato PES > 0.

➤Gli impianti "high efficiency" sono soggetti ad incentivazioni che devono essere fissate dagli stati membri.

L'indice di risparmio energetico PES

$$PES = (1 - \frac{E_{fuel}}{\frac{E_{el}}{\eta_{el,ref} \times p} + \frac{Q_{rec}}{\eta_{th,ref}}}) \times 100$$

Esempio di valori di riferimento					
Rendimento elettrico η _{el,ref}	0.525				
Rendimento termico η _{th,ref}	0.90				
Efficienza di rete p (es. BT)	0.925				

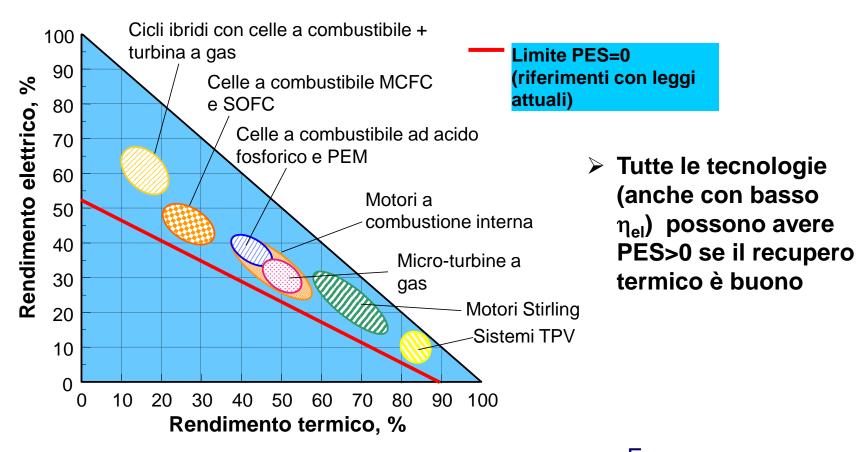
- ➤ L'indice di risparmio energetico PES primary energy saving index confronta il consumo di energia primaria del sistema cogenerativo con il consumo che si avrebbe generando separatemante la stessa quantità di calore ed elettricità.
- ➤ Qrec è tutto il calore "utile" recuperato (es. per carico termico, per frigoriferi ad assorbimento).
- ➤I valori dei rendimenti di riferimento dipendono dalla classe di combustibile usato.
- ➤II dimensionamento del sistema deve consentire un corretto recupero energetico e quindi il conseguimento di un PES positivo.

Normativa ed incentivi

1) Sul fronte del combustibile, la cogenerazione può sfruttare - come tutti i sistemi di autoproduzione elettrica - una *parziale defiscalizzazione dell'accisa* sul combustibile utilizzato; per il gas naturale non viene applicata l'accisa su 0.22 Nm³ di gas ogni kWh_{el} prodotto (tutto il gas utilizzato risulta defiscalizzato se l'impianto ha un rendimento elettrico maggiore o uguale al 46% circa).

Vantaggio rilevante per utenze del settore civile, dipendente dalla classificazione dell'utenza e dall'accisa pagata

- 2) Se soddisfa i criteri delle delibere AEEG l'impianto acquisisce, come gli impianti a fonte rinnovabile, diritto alla *priorità di dispacciamento*, ovvero la possibilità di vedersi ritirare dal GSE l'eventuale energia elettrica cedibile alla rete con priorità rispetto agli altri impianti di generazione
- 3) un tema cruciale è la valorizzazione della EE ceduta alla rete; la legislazione recente dà vantaggi agli impianti di cogenerazione ad alta efficienza sotto ai 200 kWe con «scambio sul posto» (VEDI NEL SEGUITO..)


Normativa ed incentivi - II

- 4) possibilità di acquisizione dei *titoli di efficienza energetica* (TEE) o *certificati* bianchi, varati in generale per tutte le iniziative di risparmio energetico, con valore negli ultimi anni prossimo a 80-100 €/tep risparmiata.
- ➤ Il valore è tuttavia piuttosto basso (si traduce poi in circa 0.5 c€/kWh_{el}).
- 5) Nel caso particolare degli impianti alimentati a biomasse (come gli impianti a energie rinnovabili in genere) è possibile accedere ad un tipo diverso di incentivi, i "Certificati Verdi", concessi indipendentemente (purtroppo!) dal rispetto dei parametri che definiscono la cogenerazione ad alta efficienza.
- ➤ Erogati dal GSE con riferimento ai kWh elettrici prodotti , senza tenere conto del calore (valore negli ultimi anni circa 80-90 €/MWhel, con un coefficiente moltiplicativo che arriva fino a 1.8 per le biomasse; in alternativa per impianti di potenza < 1 MW_{el} Tariffa Onnicomprensiva di 280 €/MWh_{el} per 15 anni)

Effetto dei rendimenti e rappresentazione del PES

Esempio per tecnologie per cogenerazione di piccola scala (< 1 MWel)

$$PES = (1 - \frac{E_{fuel}}{\frac{E_{el}}{\eta_{el,ref} \times p} + \frac{Q_{rec}}{\eta_{th,ref}}}) \times 100$$

Per seguire i carichi termici delle utenze (sia pure mediati da sistemi di accumulo termico) e ottenere un buon PES, è utile ai cogeneratori (soprattutto piccoli, con minore economia di scala rispetto ai grandi CHP e alle grandi centrali) potere vendere energia in rete a prezzi remunerativi.

Come è la situazione oggi per un piccolo cogeneratore?

Le alternative principali sono

- il Ritiro Dedicato (RID); oppure
- lo Scambio sul posto (SSP), solo per i casi fino a 200 kWel

Quale contributo danno al bilancio annuale di un cogeneratore?

Un esempio di confronto

Consideriamo di installare un motore cogenerativo (η_{el} =0.4 , η_{th} =0.45) presso tre utenze, con potenza del motore di 6 , 20 o 150 kW, funzionante per 6000 h/anno

DATI IMPIANTO				
Potenza nominale	6	20	150	kWel
ore equivalenti	6000	6000	6000	h
produzione elettrica	36000	120000	900000	kWh
% autoconsumo	75%	75%	75%	
% immissione	25%	25%	25%	
autoconsumo	27000	90000	675000	kWh
immissione	9000	30000	225000	kWh
prelievo	7200	24000	180000	kWh
livello allacciamento	BT	BT	MT	

Un esempio di confronto - Il

Consideriamo per ogni utenza un possibile contratto di acquisto sia monoorario che multi-orario, secondo i prezzi di mercato

CONTRATTO F1 F2 F3 2013	F1	F2	F3
prezzo componente energia	0.096	0.07	0.07 <i>€</i> /kWh
servizi rete tr,dis,mis,disp	0.015188	0.07	0.07 GkWh €/kWh
oneri generali A,UC,MCT	0.06204		€/kWh
accisa	0.0125		€/kWh
totale prezzo variabile	0.089728		€/kWh
•		202 2470	
totale variabile	445.7479	383.3479	383.3479 <i>€</i> /anno
quota potenza	30.11		€/kW
totale quota potenza	60.22	60.22496	60.22496 <i>€</i> /anno
quota fissa rete	26.85		€/anno
quota fissa oneri generali	133.8075		€/anno
totale quota fissa	53.55	53.5516	53.5516€/anno
TOTALE COSTO	559.5245	497.1245	497.1245€/anno
energia riferimento	2400	2400	2400 kWh
prezzo medio acquisto	0.233135	0.207135	0.207135 <i>€</i> kWh

Esempio per caso da 6 kW

Un esempio di confronto - III

Consideriamo ora che l'energia elettrica venga venduta con lo schema RID oppure SSP, secondo le (complesse..) normative vigenti

SCAMBIO SUL POSTO				
immissione fisica	9000			kWh
fattore perdita BT	5.10%			
energia immessa	9459			kWh
POZ medio Mar 2013 F1 F2 F3	0.06117	0.07319	0.05564	€/kWh
Cei	192.86901	230.7681	175.4329	€
energia prelevata	7200			kWh
PUN medio Mar 2013 F1 F2 F3	0.07237	0.05775	0.05775	€/kWh
Oe	173.688	138.6	138.6	€
min[Oe;Cei]	173.688	138.6	138.6	€
surplus Cei-Oe	19.18101	92.16807	36.83292	€
Cusf	0.016468292			€/kWh
ES	7200			kWh
Cusf*ES	39.5239008	39.5239	39.5239	€
CS	232.3929108	270.292	214.9568	€
onere servizio SSP	-10	-10	-10	€
TOTALE SSP				
cash flow SSP	222.3929108	260.292	204.9568	€
energia riferimento	3000	3000	3000	kWh
prezzo medio SSP	0.07413097	0.086764	0.068319	€/kWh

RITIRO DEDICATO				
immissione fisica	9000			kWh
fattore perdita BT	5.10%			
energia immessa	9459			kWh
POZ medio Mar 2013 F1 F2 F	0.06117	0.07319	0.05564	€/kWh
valore immissione	192.86901	230.7681	175.4329	€
tariffa quota potenza	0.5			€/kW
onere quota potenza	-3			€
tariffa valore immissione	0.15%			
onere quota immissione	-0.28930352			€
totale oneri	-1.09643451	-1.09643	-1.09643	€
TOTALE RID				
cash flow RID	191.7725755	229.6716	174.3365	€
energia riferimento	3000	3000	3000	kWh
prezzo medio RID	0.063924192	0.076557	0.058112	€/kWh

Esempio per caso da 6 kW

RISULTATI (6 kW)		
	€/kWh	RMF
PREZZO MEDIO SSP	0.078188	0.350
PREZZO MEDIO RID	0.067911	0.304
PREZZO MEDIO ACQUISTO	0.223135	
	€/anno	
CASH FLOW SSP	703.6905	
CASH FLOW RID	611.1961	
CASH FLOW CB	277.9211	

Esempio per caso da 6 kW; riportato anche il contributo dei certificati bianchi (CB)

RISULTATI	€/kWh	€/kWh	€/kWh
	F1	F2	F3
PREZZO MEDIO SSP	0.07413097	0.08676399	0.06831894
PREZZO MEDIO RID	0.063924192	0.076557212	0.058112162
PREZZO MEDIO ACQUISTO	0.23	0.21	0.21
RMF SSP	0.318	0.419	0.330
RMF RID	0.274	0.370	0.281
	€		
CASH FLOW SSP	687.6417024		
CASH FLOW RID	595.7806965		
CASH FLOW CB	277.9210664		

- II valore del «Reverse Metering Factor» RMF (Valore vendita EE / costo acquisto EE) ottenuto secondo le normative attuali non è molto alto: nel caso a 6 kW oscilla intorno a 0.3 per il caso RID e 0.35 per il caso SSP (valori minimi e massimi 0.274 e 0.419 nel caso su tre fasce)
- La situazione migliora con la taglia: 0.32-0.38 a 20 kW e 0.34-0.41 salendo a 150 kW
- Si conferma il vantaggio dello SSP rispetto al Ritiro dedicato (RID)

In conclusione per quanto riguarda la cessione di energia in rete....

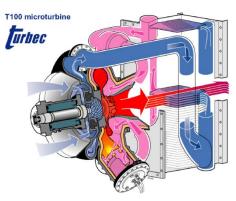
- ➤ Dal punto di vista della cessione di energia elettrica in rete, un impianto di piccola cogenerazione ottiene dei Reverse Metering Factor RMF (Valore vendita EE / costo acquisto EE) nella fascia 0.3-0.4, con vantaggio di circa 5 punti % per SSP rispetto a RID.
- I valori più alti si ottengono destinando tutta la produzione elettrica all'autoconsumo
- ➤ Siamo distanti da un teorico equilibrio acquisto-vendita che vorrebbe RMF=1 o prossimo all'unità....(per non citare le feed-in tariff premianti delle rinnovabili, dove RMF >>1)
- ➤ Da notare che la situazione era migliore alcuni anni fa (nel 2008 lo SSP si calcolava con i prezzi di ritiro secondo AU, superiori ai prezzi zonali attuali in quanto comprensivi di dispacciamento e voci di costo ulteriori), con RMF oltre 0.5 con punte di 0.8.
- La piccola cogenerazione, visti gli indubbi benefici energetici ed ambientali che può portare, meriterebbe un trattamento meno sfavorevole.

Grazie per l'attenzione

www.gecos.polimi.it

Approfondimenti

MTG: Quadro delle proposte di mercato


• Unità da 30-250 kW_{el}, rendimento 25-33%, costo circa 1500 €/kW

Costruttore e modello	Potenza	Rendimento	Portata gas	Velocità di	Peso	Ingombri
	(kW)	elettrico netto	di scarico	rotazione	(kg)	(lungh.× largh.×
		(PCI) %	(kg/s)	(giri / minuto)		alt., m)
Capstone C30	28	25	0.31	96000	405 ⁽¹⁾	1.5×0.76×1.9
Capstone C65	65	28	0.49	96000	1250	1.9×0.76×2.8
IR PowerWorks MT70	70	29	0.73	44000	2200	1.8×1.08×2.2
Capstone CPS TA100 ⁽²⁾	100	29	0.79	68000	2040	3.0×0.84×2.1
Turbec T100	100	30	0.80	70000	2770	2.8×0.9×1.8
Capstone C200	200	33	1.30	60000	2270	3.6×1.70×2.5
IR PowerWorks MT250	250	30	2.0	45000	5307	3.2×2.16×2.3

Unità da 30 KW_{el}

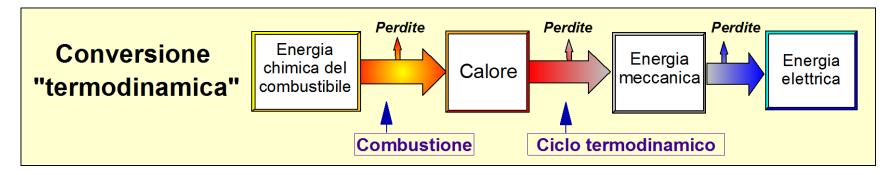
Unità da 200 KW_{el}

MCI per COGENERAZIONE DOMESTICA

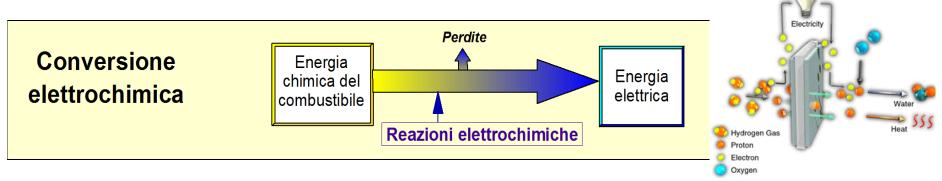
Caratteristiche	Ecowill (Honda)	Senertec (DACHS)
Potenza elettrica	1 kW _{el}	$5.0 \mathrm{kW_{el}}$
Rendimento elettrico netto	20% PCI	26% PCI
Potenza termica recuperabile	3.25 kW _{th}	12.3 kW _{th}
Rendimento totale (elettrico e termico)	85%	89%
Dimensioni (Largh.xProf.xAlt.)	0.38x0.58x0.88 m	0.72x1.1x1.0 m
Massa	81 kg	520 kg
Costo (€)	6000	13000
Costo di manutenzione [€MWh]	20	12
Rumorosità [dB(A)]	44	52
Catalizzatore	3 vie (sonda λ)	Ossidante

- ✓ Presenza catalizzatore
- ✓ Buon rendimento di primo principio
- ✓ Buona affidabilità

- ✓ Costi di installazione ancora relativamente elevati (2500-6000 €/kW)
- ✓ Rumorosità e vibrazioni ; emissioni basse ma non bassissime...



Confronto con motori a gas


Caratteristiche	MTG	Motori
Costi	Relativamente alti (es. 1500 €kW)	Più contenuti a pari taglia
Rendimento elettrico	28-33% (sviluppi)	30-35%
Fattore di utilizzo del combustibile	80% circa	80-90% (a basse temp.)
Emissioni	Ridotte (es. NOx e CO < 0.1 g/kWh; in molti casi NOx < 9 ppmv @ 15% O2)	Piuttosto elevate (richiedono "lean-burn", cat. ossidante, sistema SCR)
Peso, ingombri	Molto contenuti	Elevati
Rumore, vibrazioni	Facilmente abbattibili (es. 70 dB @ 1m)	Talvolta problematici
Manutenzione	Piuttosto ridotta	Impegnativa
Affidabilità	Potenzialmente elevata	Tecnologia collaudata;
	(semplicità impiantistica: es.alcuni modelli sono totalmente privi di sistemi ausiliari quali circuiti di raffreddamento, pompe, circuiti di lubrificazione).	collegata a manutenzione, vita utile più breve

Le celle a combustibile: una via diversa per la conversione dell'energia chimica in energia elettrica

 La trasformazione dell'energia chimica di un combustibile in energia elettrica può avvenire direttamente, in modo simile a quanto accade nelle comuni batterie, mediante reazioni elettrochimiche all'interno delle celle a combustibile (Fuel Cell, FC):

- La trasformazione elettrochimica può essere estremamente efficiente e non deve sottostare alle limitazioni di rendimento dei cicli termodinamici
- La potenziale assenza di processi di combustione riduce le emissioni delle FC

Classificazione complessiva

Stato di sviluppo tecnologico e costi di impianto

Tipo	Denominazione completa	Taglia impianti	Stato	Costo	Rendimento
	della cella a combustibile	esistenti	tecnologia	attuale ⁽²⁾	elettrico (PCI) ⁽³⁾
				(€kW _{el})	
PEM	Ad elettrolita polimerico	max 250 kW	ricerca(1)	2-4000	35-40%
PAFC	Ad acido fosforico	max 11 MW	commerciale	2000	40-42%
MCFC	A carbonati fusi	max 1.8 MW	ricerca ⁽¹⁾	3-4000	45-50%
SOFC	Ad ossidi solidi	max 220 kW	ricerca ⁽¹⁾	5-8000	45-60%

- (1) stadio di sviluppo di ricerca e sperimentazioni di prototipi e impianti dimostrativi; per PEM e MCFC, alcune applicazioni pre-commerciali in settori di nicchia
- (2) Il costo attuale risente del diverso stadio di sviluppo delle tecnologie disponibili.
- (3) per generazione stazionaria partendo da gas naturale, in ciclo semplice

Campi di applicazione:

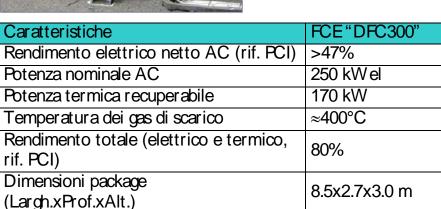
- generazione stazionaria di piccola taglia (sistemi PEM, DMFC e SOFC),
- generazione stazionaria di grande taglia (sistemi MCFC e SOFC, integrazione in cicli ibridi con turbine a gas),
- trasporti e propulsione (sistemi PEM)

Celle polimeriche (PEFC o PEM)

- Basse temperature di funzionamento, transitori rapidi
- Applicazioni per trazione (elevata potenza specifica)
- Rendimento fino a \cong 40% con fuel processor a gas naturale; fino a 55-60% da idrogeno (anche >60% a carichi ridotti); applicazioni stazionarie 1 \div 250 kW

Sopra: applicazioni mobili Nuvera, Toyota e UTC da 70-100 kW (USA, Giappone, Canada).

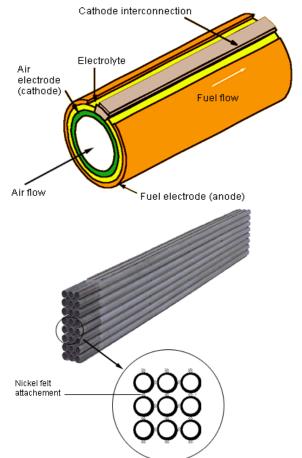
Sotto: Impianti PlugPower da 5 kW, Ebara-Ballard da 1.3 kW, Ballard da 250 kW.

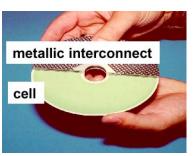


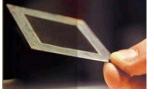
Celle a carbonati fusi (MCFC)

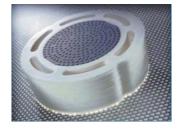
- Applicazioni stazionarie (es. 250 kW ÷ 3 MW)
- Tecnologia "DFC" ad alta temperatura (650°C) con uso gas naturale e «reforming interno»; Rendimento 45 ÷ 50%;

Impianti dimostrativi Fuel Cell Energy da 300 kW (New York e San Diego, USA)




- Oltre 100 installazioni "FCE" (>100 MW complessivi), alcune con biogas da digestori anaerobici.
- Dimostrata disponibilità > 96%,
- Impianto più grande da 11 MW, South Korea




Celle a ossidi solidi (SOFC)

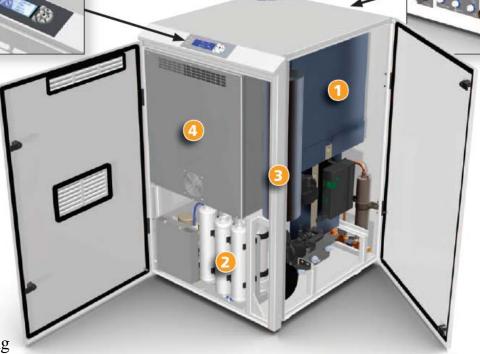
- Applicazioni stazionarie 100 kW ÷ 3 MW / residenziali 1 ÷ 5 kW
- Alta temperatura (700-1000°C), uso gas naturale, cogenerazione ad alta T
- Rendimento fino a 48 ÷ 60%

Celle SOFC tipo tubolare Siemens-Westinghouse, tipo circolare - planare Hexis da 1kW; Celle planari Ceres, CFCL, Rolls-Royce, FCE.

Esempio applicativo: prototipi CFCL

Sistema SOFC CFCL (Australia) in fase di R&D avanzata:

• Celle planari IT-SOFC (750°C); 2 kW_{el}, rendimento 55-60% da gas naturale, reformer integrato;


• Potenza termica: 300-1000 W

(gas di scarico raffreddati a 30°C)

• Rendimento totale: fino all'85%

- 1 Gennex™ Fuel Cell Module
- 2 Integrated water treatment system
- 3 Integrated gas cleaning system
- 4 Power management system, including grid connect inverter

- 1 Modulo a celle a combustibile Gennex™
- 2 Sistema integrato di trattamento acqua
- 3 Sistema integrato di lavaggio gas
- 4 Sistema di gestione alimentazione elettrica, comprensivo di invertitore connessione alla rete

Rendimenti di confronto per il calcolo di PES

➤ Nella formula l'efficienza di produzione elettrica e termica di confronto dipenda dal tipo di combustibile utilizzato (in precedenza, dipendeva anche dalla taglia dell'impianto)

Tipo di combustibile	Anno costruzione: 2006-2011
CARBONE FOSSILE	44,2
COMBUSTIBILI A BASE DI LEGNO	33,0
BIOMASSE AGRICOLE	25,0

PETROLIO, GPL	44,2
BIOCARBURANTI	44,2
GAS NATURALE	52,5
BIOGAS	42,0

Tipo di combustibile	Vapore/acqua calda	Utilizzo diretto gas di scarico
Solido	80-88	72-80
Liquido	80-89	72-81
Gas naturale	90	82
Altri comb. gassosi	70-89	62-81

Efficienza di produzione elettrica di confronto

Efficienza di produzione termica di confronto

Perdite di rete per il calcolo di PES

- ➤ Nella formula l'efficienza di rete ha valori che dipendono dal livello di tensione cui è allacciato l'impianto: per l'utilizzatore finale la potenza scambiata in bassa tensione ha "valore energetico" superiore rispetto alla potenza elettrica scambiata in AT.
- ➤II coefficiente p dipende inoltre da quanta e.e. viene immessa in rete (Ee,im) e quanta viene autoconsumata (Ee,ac)

$$p = \frac{p_{im}E_{e,im} + p_{ac}E_{e,ac}}{E_{e,im} + E_{e,ac}}$$

	p im	p ac
<0,4 kV	0,925	0,860
0,4-50 kV	0,945	0,925
50-100 kV	0,965	0,945
100-200 kV	0,985	0,965
>200 kV	1	0,985